
Codedle() Guidelines
The following are a list of rules/guidelines that all daily code
segments follow in order to ensure a more balanced and fair game. The
following rules can serve 2 purposes: helping players determine how
code is structured to optimize their guesses or for helping code
contributors determine how their code should be submitted.

● “Errors/Exceptions”: there should not be any explicit

errors/exceptions or a language’s equivalent in any of the code
segments for any day, but if there is a possibility for an error
and it is not covered, it is fine. If you think there might be an
error for a day’s code, please fill out this form

○ Example: this Java code is not acceptable:

`int num= 5/0;`

○ Example: this Java code is acceptable even if a division by

zero exception can occur:
`int input= 5/scanner.nextInt();`

● “Scope”: the scope of any day’s code segment can vary. Therefore,

a variable may or may not be declared within the code segment
because any scope is allowed.

○ Example: Let's say we have the following Java code:

public class Student {
private int gradeLevel;
private int[] grades;
public double calcAvgGrade(){

int tot=0;
for (int grade : grades){

tot+=grade;
}
return (double)tot/grades.length;

}
}

In the example above, both the `Student` class as well as
the `calcAvgGrade()` code could appear as a code segment.

This means if `calcAvgGrade()` was used as the daily code
segment, `grades` would not be declared within the given
code segment for the day, which would not break any rules.

https://docs.google.com/forms/d/e/1FAIpQLSfls32E6ZBS75Upn12TMfx2DXJwOMGud9Vyxbxn82YrEY_-0Q/viewform


● “Naming Scheme”: the naming scheme of variables and members might

not always follow the typical naming conventions of a language,
so that should not narrow down your guess. However, it is highly
encouraged for contributors to submit code that does follow the
language’s naming scheme to reduce confusion.

○ Example. `int level_count` in Java or

`let HtmlResult` in JavaScript would not break any rules

● “Language Feel”: daily code segments should match the “feel” of

the target programming language as best as possible. That does
not mean, however, that features of a language that do not match
its “feel” might not appear.

○ Example: C# code should not use get() and set() methods like

Java since C# has properties that allow you to do:
`public int VarName {get; private set;}`

○ Example: you can use printf() in C++ code, but should be

avoided most of the time to maintain the C++ “feel” with
std::cout

● “Language Use”: daily code segments are not always limited to the

typical use cases of a programming language and it is highly
encouraged to submit interesting and varied segments that do not
fall into the typical use cases.

○ Example: Web pages with Python



● “Identification”: each code segment must have a feature that

identifies it as the target language and no other with at least 1

part of the code that exists to that language only. This means
each segment should have either a keyword, language feature or
other notable aspect that only that language has. It does not
mean it can not have common features.

○ Example: the following code can be applicable to C, C++, C#,

Java (and probably others too)

int count=0;
for (int i=0; i<5; i++)
{

if (i%2==0)
{

count+=i;
}

}

● “Feature Support”: any feature for a programming language may

appear, whether it is widely used or not. It does not matter if a
language still supports a feature or not, it can be used as long
as that feature works in the version used for the code segment.
The entire code segment should be written in one consistent
version.

○ Example: using C++ `nullptr` feature from C++11 or using the

older `NULL` for null pointers are both acceptable

● “Implementation”: daily code segments might not always have the

best time complexity, space complexity or may have the most
optimal way of achieving the task.

○ Example: C implementation of Bubble Sort does not break any

rules

● “Style”: the color coding for a language may not be consistent

and therefore should not be used to determine a guess for a
language.

○ Example: C# `using` keyword should be blue, but is pink for

a daily code segment.


